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ABSTRACT

We focus on the problem of parsing fashion images for
detecting various types of clothing and style. The current
state-of-the-art techniques for the problem are mostly based
on variations of the SegNet model [1]. The techniques for-
mulate the problem as segmentation and typically rely on ge-
ometrical shapes and position to segment the image. How-
ever, specifically for fashion images, each clothing item is
made of specific type of materials with characteristic visual
texture patterns. Exploiting the texture for recognizing the
clothing type is an important cue which has been ignored so
far by the state-of-the-art. In this paper, we propose a two-
stream deep neural network architecture for fashion image
parsing. While the first stream uses the regular fully convo-
lutional network segmentation architecture to give accurate
spatial segments, the second stream provides texture features
based upon Gabor filters and helps in determining the cloth-
ing type resulting in improved recognition of the various seg-
ments. Our experiments show that, the proposed two-stream
architecture successfully reduces the confusion between the
clothing types, having similar visual shapes in the images but
different material. Our approach achieves state-of-the-art re-
sults on the standard benchmark datasets, such as Fashion-
ista [2] and CFPD [3].

Index Terms— Fashion parsing, Fully convolutional net-
work, Texture features, SegNet, Gabor

1. INTRODUCTION

In the recent years, deep convolutional neural networks have
been successfully applied for semantic segmentation, over-
coming challenges such as large visual variations in the ob-
jects, reduced feature resolution and segmenting objects at
multiple scales. However, often such models, implicitly or
explicitly, exploit domain specific features, and are restricted
to the focused domain only. Consider the case of highly suc-
cessful scene parsing models [4, 5] for segmenting higher-
level image regions such as roads, buildings, sky etc. The
same models fail miserably on human parsing for segment-
ing human body parts such as arms, legs, or torso, where the
successful models [6,7] have exploited joint labels, pose esti-
mation and customized losses that are sensitive to the human
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Fig. 1: We show how the additional supervision from texture de-
scriptors improves garment labelling. First segmentation map de-
notes the groundtruth annotation, followed by the output of Outfit
Encoder [8] and our proposed model. While [8] mispredicts a por-
tion of ‘top’ as a ‘sweater’ in the first image and ‘stockings’ as ‘skin’
in the second, using characteristic textures of these clothing items
helps our model disambiguate between them.

body configuration. On the other hand, these human parsing
models fail to extend to clothing parsing where the target is
to segment various clothing items worn by a person. While
the difference in labels, such as torso in human parsing vs
shirt and scarf in clothing parsing is one problem, the models
for human parsing are trained inherently towards ignoring the
texture. For example, a torso is classified as a torso irrespec-
tive of the texture (shirt/top/jacket). Therefore, such models,
when applied for clothing parsing, fail to distinguish between
clothing items which have similar shapes and position but dif-
ferent material, for example, denims vs trousers, or sweater vs
top. An example is shown in Fig. 1.

We observe that the texture cues complement the shape
and position information exploited by the contemporary seg-
mentation pipelines, by providing fine-grained features asso-
ciated with the material of a particular clothing object. For
instance, in the case of sweaters vs tops, it may be hard to
distinguish between the two classes on the basis of spatial or
shape cues alone. However, typically the two clothing items
not only have different materials, but also contain very differ-



ent visual patterns on them. Thus, in this work, we propose
to augment the standard segmentation pipelines with a second
stream based on the texture based features. We have experi-
mented with various texture features such as Gabor [9] and
LBP [10] and finally chosen Gabor features for its improved
experimental performance. The proposed architecture gives
state-of-the-art performance on Fashionista [2] and CFPD [3],
outperforming techniques like [2,8, 11-13].

2. RELATED WORK

Clothing Parsing In the recent years, clothing parsing has
seen active research in computer vision [11, 14-18] as a vari-
ant of human parsing [6, 7, 13, 19]. Much of the existing
works formulate the problem based on pose estimation or
non-parametric label transfer [2, 11, 12, 14, 20]. Some re-
cent works focus on joint segmentation and labeling [11] as
well as combinatorial preference of clothing items to assist
in the prediction [8]. These approaches fail to resolve con-
flicts between objects which are found at the same semantic
locations in the body. Yang et al. [11] propose a two-phase in-
ference approach in which the first phase uses exemplar-SVM
for extraction and refinement of image segments, while the
second phase uses multi-image graphical models to classify
the segments. Yamaguchi et al. [2] show an 89.0% accuracy
on the contributed Fashionista dataset using image meta-tags
and pose-estimation. However, in a scenario like ours, this
external metadata is not available. Tangseng et al. [8] claim
that higher level judgement regarding clothing combinations
is an important prior for boosting the parsing performance.

Texture Characterization Texture analysis is useful in
places where shape related features render insufficient for
characterization. Texture cues have been explored promi-
nently in texture segmentation [21] and texture recogni-
tion [21, 22] tasks. Traditional pooling encoders have been
used by some recent works [22-25] who build hybrid repre-
sentations of deep CNNs. Zhang et al. [26] integrate texture
in the deep learning models by means of an Encoding layer
that learns visual vocabularies directly from the loss function.

3. PROPOSED APPROACH

In this paper, we propose an end-to-end texture assisted seg-
mentation pipeline whose architecture has been shown in Fig.
2 and details are described below!.

3.1. Segmentation Stream

We have used Fully Convolutional Networks (FCNs) [5] as
the base for one of the streams in the proposed model. We

IThe complete source code and the pretrained models are available at
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Fig. 2: Proposed two-stream architecture for clothing parsing. We
use a separate stream to exploit texture cues for improved clothing
type recognition.

use the 8s variant which is trained progressively from its 32s
and 16s variants. As FCN-8s improves segmentation detail by
incorporating information from layers with different strides, it
gives superior results on the two datasets that have been used
in this paper. The progressive finetuning of FCN-8s has been
done on the datasets under consideration and in the proposed
model, we call this branch the ‘Segmentation Stream’. We
have also experimented with DeepLabV?2 [4] for the segmen-
tation stream but found it to be less accurate than FCN-8s.

3.2. Texture Stream

We have experimented with two commonly used texture de-
scriptors: the Gabor feature descriptor [9] and Local Binary
Patterns (LBP) [10]. We note that other texture descriptors
could have been used here as well.

Gabor Features Gabor feature [9] responses are extracted
corresponding to different wavelengths, orientations and
phases. The combined set of these feature maps are ei-
ther early fused or late fused (refer Section 3.3) into the main
network. The following parameters are adopted for feature
maps extraction - wavelength: [3-8] pixels, orientation: [0°,
45°,90°, 135°] and 5 phase values spaced uniformly from 0
to the wavelength()\). Only 4 orientation values are chosen
since most of the textures are essentially aligned along these
angles. We use an 11 x 11 sliding window for gabor feature
map extraction at each pixel. We also experimented with
windows of size 9, 13, 15 but found 11 to be working best.

Close attention has been paid to represent the wavelengths
accurately such that all the essential frequencies in the input
images are captured. We choose only small values of A i.e.
from 3 to 8 pixels, since texture on the clothing items is inher-
ently a fine-grained semantic attribute of the cloth and adding
responses for larger wavelengths to the set of feature maps
does not add value. We further validated the choices for the
texture descriptor parameters by conducting experiments on a
surrogate task to classify cropped clothing images based upon
their texture descriptors alone.



Fashionista CFPD
Gabor LBP Gabor LBP
Early Fusion
scorefr 87.7 88.1 917 91.8
upscore4 88.9 883 923 925
upscore8 894 887 928 919

Late Fusion
upscore8 + 1 conv  91.1 89.8 93.5 929
upscore8 + 2 conv 904 90.2 93.0 923

Table 1: Results obtained from various configurations of the pro-
posed model on benchmark datasets.

LBP Features We extract LBP [10] features over a slid-
ing window of size 11 x 11 as done for Gabor. The number
of neighbours is set to 8. Multiresolution analysis is accom-
plished by varying the neighbourhood radius and the number
of points to be considered in the circularly symmetric neigh-
borhood. We experiment with radii starting from 2 pixels and
extending to 9 pixels and observe a nearly 2% increase in ac-
curacy for the set of multiresolution feature maps comprising
of 2, 3, 4 radius values. However, overall, the two-stream LBP
model performs poorly as compared to the two-stream Gabor
model by about 0.9% and 0.6% on the Fashionista and CFPD
datasets respectively. Therefore, all the results reported in the
experiments section have used Gabor filters.

3.3. Stream Fusion

We have explored early and late fusion strategies for merg-
ing the texture and segmentation streams. In the early fu-
sion strategy, we merged the texture feature maps with fea-
ture maps from the segmentation stream (we experimented
with merging at various layers). The merging was followed
by a 5x5 convolutional layer to learn local context in the fused
information. In late fusion, we let the two streams generate
score maps for each of the clothing labels independently. We
then concatenate the two score maps and apply a 1x1 convo-
lutional layer to obtain the final category maps for each label.
The whole network is trained in an end-to-end fashion.

4. DATASETS

Fashionista Dataset [2] The Fashionista dataset was intro-
duced for evaluating clothing estimation techniques. It com-
prises of 685 full body images extracted from chictopia.com
in frontal/near-frontal view, with clean background and com-
plete visibility of all clothing items. Pixel annotations for
56 clothing categories, including a background class are pro-
vided. Due to the larger set of labels, it contains instances
of similarly shaped classes of upper body clothes as well as
lower body clothes. We have used 229 images for testing and
the remaining for training.

Fashionista CFPD

Accuracy IoU Accuracy IoU
OE [8] 88.6 38.0 92.3 54.7
PaperDoll [12] 84.7 - 87.1 -
SSL [6] 84.8 332 88.5 49.1
CCP [11] 90.2 - - -
DLV2 (ResNet) [4] 86.6 36.8 89.9 48.3
DLV2 (VGG) [4] 86.2 354 89.2 47.2
FCN-8s [5] 87.5 33.8 91.6 51.2
Ours 91.1 42.1 93.5 58.7

Table 2: Comparison with the state-of-the-art in terms of overall
accuracy and overall IoU. Here ‘IoU’ stands for Intersection over
Union as a metric of evaluation, ‘OE’ stands for Outfit Encoder and
‘DLV?2’ stands for DeepLabV2.

CFPD Dataset [3] The Colorful-Fashion dataset is about 3
times larger than the Fashionista dataset, consisting of 2,682
images scraped from chictopia.com. This dataset has 23
clothing category labels including a background class. Here,
894 images are used for testing and the rest for training.

5. EXPERIMENTS AND RESULTS

All the experiments have been conducted on a workstation
with 1.728 GhZ CPU, 128GB RAM, NVIDIA Quadro P5000
GPU and running Ubuntu 14.04. We augment the training
data for both the datasets using flips and crops, making sure
that no portion of the object of interest gets cropped out.

5.1. Effect of Hyperparameters

Compared to the segmentation stream (FCN-8s), we observe
a gain of 1.9% and 3.6% on the Fashionista dataset using
the texture stream in early and late fusion respectively. For
CFPD, the corresponding numbers are 1.2% and 1.9%. Aug-
menting with the texture stream helps in all the cases though,
late fusion seems to perform better.

The above mentioned results are achieved when texture
information is fused with the segmentation stream at the final
pixel classification layer ‘upscore8’ of the FCN-8s model, and
convolutional layers are added post concatenation to obtain a
cumulative set of feature maps taking both the complemen-
tary features maps into consideration. Experiments are also
conducted by fusing this information at other locations of the
encoder and decoder (scorefr and upscore4 layers). However,
concatenating at ‘upscore8’ performs the best.

For early fusion strategy, we add a convolutional layer,
post fusion, to gather the local context of a pixel before mak-
ing the final prediction about the class. We observe that the
5x5 kernel outperforms the smaller kernels of size 3 and larger
ones such as those of size 9. In the texture stream, we have
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Fig. 3: Left column shows results of the proposed model on Fashionista [2] dataset and right column shows results on CFPD [3] dataset.
For each image, first segmentation map denotes the groundtruth annotation followed by results of FCN-8s [5], Outfit Encoder [8] and the

proposed model respectively. Notice how the characteristic textures of ‘top’, ‘skirt’,

‘pants’, ‘jeans’ etc. in the images shown help in

successfully refining the segments and their corresponding class label predictions.

experimented with adding few convolutional layers and ob-
tain a full score map before late fusing with the segmentation
stream for the final prediction. Best results are obtained with
convolutional kernels of size 7. After concatenation in the
late fusion style, we have experimented by adding a 1x1 ker-
nel convolutional layer for the final pixel-wise prediction and
also by applying 2 convolutional layers of kernel sizes 5x5
followed by 1x1. The results from various such configura-
tions are illustrated in Table 1.

5.2. Comparison with State-of-the-Art

We compare our results with the state-of-the-art on the Fash-
ionista and CFPD datasets given by [11] and [8] respectively.
Our two-stream architecture, combining the segmentation
and texture streams in a late fusion style outperforms [11]
for Fashionista dataset by 0.9%. Exploiting texture features
helps in disambiguating similarly shaped clothing items and
improve results reported by Tangseng et al. [8] by 2.5% and
1.2% on the Fashionista and CFPD datasets respectively. We
also compare our approach with the FCN-8s architecture.
These results are compared in Table 2. Some examples of
the improvement in segmentation are given in Fig. 3. To
show the advantage of our model over the state-of-the-art se-
mantic segmentation architectures, we also compare with the

DeepLabV2 models. The proposed model yields an accuracy
improvement of 4.5% and 3.6% over DeepLabV2 (ResNet)
on the Fashionista and CFPD datasets respectively. To get a
better understanding of the strengths and weaknesses of our
approach, we give the confusion matrices and failure cases of
our approach in the supplementary material.

6. CONCLUSION

Texture is an important characteristic for understanding the
different clothing types in human perception. However, its
use in clothing parsing has been largely ignored where the
state-of-the-art have used standard segmentation pipelines
which have been designed and trained to ignore the texture.
In this paper, we have proposed a two-stream architecture,
using a standard segmentation pipeline in one stream, but
exploiting Gabor based texture features in the second. We
show in our experiments that the proposed model helps in
disambiguating similarly shaped but different textured cloth-
ing items, and achieves state-of-the-art performance on the
various benchmark datasets. In future, we would like to ex-
tend our model by also including human pose information
which can help disambiguate in case of self occlusion.
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Fig. 4: Examples of failure cases of the proposed model.

A. CONFUSION MATRIX

We show a comparison between the confusion matrices of
Outfit Encoder [8] and our proposed model in Fig. 5 to high-
light the improvement in the segment labelling of similarly
shaped upper body and lower body clothes.

Fashionista Dataset [2] First row in Fig. 5 shows the
confusion matrices for Outfit Encoder [8] and the proposed
model respectively for Fashionista dataset. They clearly
show that the texture based solution reduces errors among
the commonly confused classes like jeans-pants-leggings and
sweater-blouse-top.

CFPD Dataset [3] The confusion matrices in second row of
Fig. 5 for Outfit Encoder and our model respectively demon-
strate a reduction in errors between jeans-leggings-pants,
shorts-skirt, socks-stockings and t-shirt-blouse-sweater when
texture is incorporated in segmentation.

B. FAILURE CASES

Fig. 4 shows the failure cases for our proposed approach
for the Fashionista dataset in the first column and the CFPD
dataset in the second. For each image, the first segmentation
map illustrates the groundtruth, the second map shows the

Outfit Encoder (Fashionista)

Proposed Model (Fashionista)

Outfit Encoder (CFPD) Proposed Model (CFPD)

0.0 0.2 0.4 0.6 0.8 1.0
Fig. 5: Normalized confusion matrices for Outfit Encoder [8] and
the proposed model on the Fashionista (1st row) and CFPD datasets
(2nd row). Please zoom in the pdf to read the fine text in the matrices.



output from our model. Image (a) shows that our model per-
ceives the skin texture for nearly transparent stockings lead-
ing to erroneous segment labelling. In (b), the texture of the
lower body cloth changes within the segment from creased to
plain, leading to the intuitive labelling of a skirt and pant re-
spectively. For (c), a coat is mistaken to be a jacket and the
top is largely predicted as a t-shirt. In (d), t-shirt is wrongly
predicted as a sweater. Both the textures and the semantic
locations of the mispredicted and the true classes are highly
indistinguishable in the specific instances reported, leading to
the failed predictions.



