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ABSTRACT

We focus on the problem of fine-grained visual classifica-
tion (FGVC). We posit that unreasonable effectiveness of the
state-of-the-art in this area is because of similar object cat-
egories present in the ImageNet dataset, which allows such
models to be pretrained on a much larger set of samples and
learn generic features for those object categories. We observe
an important and often ignored additional structure present in
an FGVC problem: the objects are captured from a small set
of viewing angles only. We notice that subtle differences be-
tween object categories are difficult to pick from an arbitrary
angle but easier to identify from a similar pose. We show
in this paper that training specialized pose experts, focusing
on classification from a single, fixed pose, and combining
them in an ensemble style framework successfully exploits
the structure in the problem. We demonstrate the effective-
ness of the proposed approach on the benchmark Stanford
Cars, FGVC-Aircrafts, and DeepFashion datasets. To high-
light the contribution when the target category features may
not be available in a pretrained network, we test on footwear
class. We contribute a new 1000 object, 12 category footwear
dataset, each object captured from 4 different poses and show
significant improvement on this dataset.

Index Terms— Fine Grained Visual Classification, CNN
Ensemble, Pose Experts

1. INTRODUCTION

Fine-grained visual classification aims at distinguishing ob-
jects into their subclasses. For instance, dogs are categorized
into different breeds of dogs [1], and birds are categorized into
different families of birds [2, 3]. However, fine-grained dis-
tinction between objects often requires addressing two contra-
dictory issues: 1) distinguish classes having very subtle dif-
ferences between them, 2) manage the large intra-class varia-
tion that arises due to different shapes as well as poses of the
target objects. Though, in principle, automated learning of
inter and intra-class variations is possible with an end-to-end
deep neural network, doing it in practice for fine-grained clas-
sification has been difficult because of lack of large datasets.
In our work, we focus on the pose aware dimension of
the fine-grained visual classification (FGVC) problem. We
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Fig. 1: (a) and (b) shows images of two clogs from different view-
points. (c) and (d) show images of a clog and a shoe. Notice the dif-
ference in (a) and (b) and similarity of (c) and (d). We observe that
the objects become easy to identify when seen from a same view-
point. (e) and (f) shows images of two clogs from same viewpoint.
(g) and (h) shows images of a clog and shoe from a same viewpoint.
This motivates us to create an ensemble of pose experts each spe-
cialized to differentiate between the categories from a specific pose.

observe that in most of the FGVC problems, the number of
viewpoints are typically few and fixed, for example, frontal,
oblique, top view etc. Further, the subtle differences between
various object categories are difficult to pick from an arbitrary
angle, but become much simpler when done from a similar
pose. For example, consider the problem of classification for
clogs vs casual shoes as shown in Fig. 1. There are large
variations between images of a clog when seen from different
viewpoints, while on the other hand, a clog and a shoe may
look very similar from different views. However, the task
becomes easier if we exploit the pose structure inherent in the
problem and see the objects from same pose.

The specific contributions of this work are as follows: 1)
We hypothesize that the success of the state-of-the-art FGVC
techniques is largely due to generic features learnt on a much
larger dataset. 2) We propose to exploit the novel pose aware
structure for FGVC problems. We show that the proposed
model containing an ensemble of pose specializing experts,
in conjunction with the pose detection stream improves the
state-of-the-art on the standard benchmarks. As the represen-
tation of a dataset reduces in ImageNet, the effect of exploit-
ing the pose related cues becomes more profound, confirming
our hypothesis above. Note that, in contrast to the state-of-
the-art, we neither align the pose, nor attempt to find parts
of the object. 3) To further validate our hypothesis, we con-
tribute a new small dataset containing objects of footwear. We
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Fig. 2: Proposed Network Architecture.

choose the category because of lesser number of samples in
the benchmark ImageNet dataset [4]. The contributed dataset
contains 1000 annotated images of 12 footwear categories
scraped from various online stores. Each object has been cap-
tured from 4 different viewpoints: 90° left, 45° left, 45° right
and 90° right. The improvement of the proposed technique
over state-of-the-art is greater on this dataset compared to the
cars and aircrafts datasets.

2. RELATED WORK

Fine-grained image classification problems have become
popular over the past few years particularly on trees, flowers,
leaves, butterflies and dog datasets [1, 5-7]. Compared to
generic object recognition, fine-grained recognition benefits
more from learning critical parts of the objects that can help
align objects of the same class and discriminate between
neighbouring classes [7-13]. However unlike our approach, a
lot of manual annotation of data is required. Ge et al. [14] use
an approach similar to ours where they have partitioned the
data into K non-overlapping sets of similar images and learnt
an expert DCNN for each set. They achieve state-of-the-
art results on two datasets: Caltech-UCSD-2011 (CUB200-
2011) [3] and Birdsnap [2]. However, they segregate images
into subsets based on arbitrary feature distinctions while we
exploit the pose variations exclusively. The work of Lin et
al. [15] consists of two feature extractor models that obtain
local pairwise feature interactions in a translation invariant
manner which is particularly useful for fine-grained cate-
gorization. It gives state-of-the-art 84.1% accuracy on the
CUB-200-2011 dataset requiring only category labels and
no bounding boxes at training time. A major motivation for
our work comes from Pose Aware Models (PAMs) for face
recognition proposed by Masi et al. [16], an approach that
tackles pose variations by multiple pose-specific models and
rendered face images, however unlike ours they specifically
fix the pose.

3. PROPOSED APPROACH

In this paper, we propose the idea of ‘Pose Experts’ for pose
aware fine-grained image classification. We define a Pose

Expert as a network trained on pose-specific data from only
one particular pose in a fine-grained environment which is es-
sentially, distinctive by class and consistent by pose. To aid
prediction by the proposed Pose Experts, an additional meta-
network is used which is trained for identifying a specific pose
of the supplied image. An ensemble of these networks is used
to obtain the final prediction as shown in Fig. 2. Note that,
an alternative to the proposed architecture is to use the pose
detector followed by the appropriate pose expert sequentially.
However, unlike the alternative, the proposed model is train-
able end-to-end and gave better performance in our experi-
ments. We give further details of our proposed model below'.

Network Architecture We have experimented with various
shallow (LeNet [17]), deep (AlexNet [18] and VGG16 [19]),
and very deep (ResNet-50 and ResNet-101 [20]) CNN archi-
tectures. Tests were also carried out with a ‘Reduced VGG16’
model, obtained by removing the fc6 and fc7 layers in the
original VGG16 model and ‘Reduced Alexnet’ which was
arrived at by removing fc7, the last fully connected layer in
AlexNet. For all experiments, we used pretrained ImageNet
dataset [4] weights for AlexNet, VGG and ResNet models
while finetuning parameters for all layers. LeNet5 was trained
from scratch. Various architectures were tested for Pose Ex-
perts and Pose Detector networks. VGG16 gave the best re-
sult for the Pose Detector branch throughout. Further details
and results are provided in the subsequent sections.

Feature Concatenation Let the number of poses under ex-
amination be n and the number of fine-grained categories be
k. For classifying an image from an arbitrary pose, we cre-
ate an ensemble of n pose experts. For this purpose, a test
image is sent as input (not necessarily of the view for which
the expert is trained for) to each of the n experts. The k-
dimensional vectors containing class-wise confidence scores
are concatenated into a single n * k£ dimensional feature vec-
tor. m-dimensional score vector from the ‘Pose Detector’ is
then concatenated to form a n * k + n dimensional vector.

Footwear Dataset We initiated our research using the pop-
ular UT-Zappos footwear dataset [21] which has about 50,000
images and provides a significantly large benchmark for anal-
ysis. However, the lack of diversity with respect to the poses
in the dataset rendered it unfit for use in our research. Conse-
quently, around 1000 images of footwear were scraped from
online stores such as amazon corresponding to 12 classes
for four different poses. The classes spanned across: Ankle
Boots, Knee High Boots, Formal Shoes, Casual Shoes, San-
dals, Slippers, Ballerinas, Boat Shoes, Clogs, Ethnic Chappal,
Ethnic Juti, Heels. The four poses used were: Facing Left,
Facing Right, Diagonal Facing Left and Diagonal Facing

IThe complete source code as well as the dataset is available at http:
//to.be.released.post.acceptance.



Classes Single Network PE Network

LeNet AlexNet VGG16 LeNet AlexNet VGG16

birds cars aircrafts

\bbox bbox \bbox bbox \bbox bbox

4 722 873 88.1 80.7 90.5 90.8
8 63.7 742 732 713 823 82.7
12 521 734 72.1  59.6 79.1 79.3

Table 1: Performance of Pose Experts v/s single network for all
poses. ‘PE Network’ denotes Pose Ensemble Network.

Classes Single Network PE Network
R-AlexNet R-VGG16 R-AlexNet R-VGGI16
4 88.3 88.8 93.1 94.1
8 77.5 78.6 84.5 86.3
12 76.2 77.5 82.6 83.5

Table 2: Usefulness of pose experts with reduced (R) networks.

Right. The pose-specific data is mutually exclusive. The im-
ages have a plain white background with no occlusion present
from any other object and the footwear under consideration
occupies a majority portion of the image. We would like to
emphasize here that, the dataset size is kept small deliber-
ately, in consonance with the practical requirements of an
FGVC problem where the data is typically scarce and hard
to collect. Further, the footwear category is chosen to high-
light the effect of under represented classes in the ImageNet
dataset. Sample images from our dataset are given in the
supplementary material.

4. EXPERIMENTS AND RESULTS

Pre-defined architectures were used for experimental testing
except for the ‘Reduced VGG16’ and ‘Reduced Alexnet’
models. For the benchmark datasets, we use two protocols
for evaluation: one where the object-level bounding box is
not provided either at training or testing time i.e. “\bbox’,
and the other ‘bbox’ where object-level bounding box is used
in both phases. We augmented the data using techniques like
resizing, adding salt and pepper noise and blurring. Since our
problem involved pose monitoring, we did not apply the most
common augmentation strategies like flipping and rotation for
pose experts as that could alter the inherent pose-based nature
of the problem. However, we have used flipping and rotation
while augmenting data for training the compared techniques.
We emphasize here that curation of the datasets into different
poses, where an unambiguous and definite pose structure is
present is not expensive as many pose aware datasets like
the Pose Aware Person Dataset [22] are available. Modeling
the pose is an important characteristic for reducing problem
complexity and is much easier than the effort required in part
based annotation which gives only a comparable accuracy.

Proposed 763 784 879 92.0 825 839
BCNN [15]\ft 80.1 81.3 839 - 78.4 -
BCNN [15] ft 84.1 851 913 - 84.1 -
BGL [23] 759 804 86.0 90.5 - -
MixDCNN [14] - 81.1 - - - -
SCDA [24] 80.5 - 85.9 - 79.5 -

Table 3: Performance comparison with state-of-the-art on standard
datasets. ‘\ft’ denotes without finetuning.

4.1. Analysis and Characterization

Pose Experts v/s Single Network: One of the main hy-
pothesis of the current work is to establish the effectiveness
of training and merging multiple pose experts to outperform
a single network on a dataset that contains images distinctly
segregable based on their pose. A single network is supplied
with all the pose-related data together during training while
the pose experts specialize in specific poses. We validate this
concept first on the Footwear dataset. In the first set of experi-
ments, we trained single networks that contained images from
all poses and all classes in equal proportions. 600 distinct im-
ages were used in all for the training, 150 from each pose.
The single net and the pose expert accuracies are reported in
Table 1 and Table 2.

Shallow Pose Experts: Having highlighted the usefulness
of an ensemble of pose experts over a single network, the pro-
posed work also indicates the viability of replacing a state-of-
the-art single deep network with an ensemble of shallow pose
experts that can be trained efficiently even with extremely
small datasets, and still perform at par or better than the
deep network. We have used Reduced AlexNet and Reduced
VGG16 as representatives of shallow networks, in which the
last fully-connected layers have been removed. Since most
of the parameters lie in the fully-connected layers, this leads
to a significant decrease in trainable parameters. Results are
illustrated in Table 2.

4.2. Comparison with the State-of-the-Art

For comparisons in this section, we use Reduced VGG16 net-
work for pose experts in the footwear dataset, and VGG16
network for the same in the benchmark datasets. Our archi-
tecture involves very few trainable parameters in comparison
to the state-of-the-art such as BCNN [15] which has a high
dimensional 512*512 bilinear vector, obtained after taking
cross product. Gradient with respect to this layer is computa-
tionally expensive. Small parameter size is a critical require-
ment for a practical FGVC solution. Table 3 shows the com-
parison. For more details on experiments and the quality of



features learnt by our model, please refer to the supplemen-
tary material.

Footwear Dataset On the Footwear dataset, Bilinear CNN
(DD) without finetune, yields a best accuracy of 78.64% on 12
classes with 4 poses. On finetuning, this increases to 81.1%,
which is about 2.5% lower than our best result of 83.5% us-
ing R-VGG16 as highlighted in Table 2. All experiments on
our dataset have been carried out with images of size 224*224
while Bilinear CNN operated on images of twice the resolu-
tion i.e. 448*448. When we adopt a resolution of 448*%448 in
our model, we get a further increase of about ~ 0.7%.

FGVC-Aircrafts Dataset The FGVC-Aircrafts dataset
[25] consists of 10,000 images of aircrafts spanning 100
models. Images are divided into 2 poses: left facing and right
facing. One can argue that complementary images from these
2 poses could have been generated by flipping the training
data. However, our hypothesis is that training a single net-
work for both views is a sub-optimal choice when the number
of samples are few and inter-class variance is low. Exper-
iments on this dataset showed the maximum improvement
from the single network performance. This can be attributed
to the minimal representation of aircrafts in ImageNet, which
has been used for finetuning models in the state-of-the-art
as well as ours. Our model outperforms the single network
which gives an accuracy of 74.1% by nearly 8.5%. Bilinear
CNN [15] gives an accuracy of 84.1% on the dataset. Our
model is able to perform better than the SCDA approach [24].
When bounding boxes are used, the result from our model
improves to 83.9% from 82.5%.

Stanford Cars Dataset Stanford Cars dataset [26] contains
16,185 images of 196 car categories. Images from this dataset
were divided into 3 poses: front facing, side facing and back
facing. Trends obtained for the cars dataset are similar to
those obtained in the case of aircrafts. Our model again per-
forms well on this dataset due to the pose structure in the data.
We outdo the single VGG16 network (best performing single
network with accuracy 79.8%) using our approach by nearly
8.1%. BGL [23] and SCDA [24] are both outperformed by a
margin of about 2% each. Results with bounding box anno-
tation are better by around 4% (at 92.0%), which we specu-
late are due to more background clutter here compared to any
other dataset.

CUB200-2011 Dataset CUB200-2011 is a 200 bird species
recognition dataset which contains 11,788 images. We seg-
regate the dataset into 3 poses: front, left facing and right
facing. On this dataset, we fall slightly short of the state-of-
the-art accuracy as given by [15]. The primary reason for this
seems to be the lack of rigidity or consistent poses in the birds
dataset. The dataset contains images of birds with extreme

variation in pose (e.g., flying birds, swimming birds), incon-
sistent pose (head and torso in opposite directions), and vari-
ation in the angle from which the images have been clicked.
This makes it highly difficult to narrow down to a fixed num-
ber of poses with limited variability. Our pose detector stream
also does not give a competent accuracy for the same reason.
However, the proposed approach gives similar accuracy as the
other state-of-the-art approaches: MixDCNN [14], BGL [23]
and SCDA [24].

4.3. Application to Clothing Classification

We test our model on clothing classification using the Deep-
Fashion Attribute Prediction dataset [27] with two protocols.
DeepFashion has 50 category labels with bounding box anno-
tations, which we use to crop out a particular class at a time.
We segregate the cropped images into three poses: front, back
and side automatically using image meta-data, and perform
classification using our model as well as that of BCNN [15].
In the first protocol, we take the entire category set of 50 la-
bels. BCNN performs at 53.4% whereas our ensemble gives
55.7% (Front: 61.8%, Back: 58.2%, Side: 50.5%). Our pose
isolation model is able to give significant improvement in the
side pose category classification which is a considerably diffi-
cult problem for the fashion domain. We also tested on a vari-
ant of the dataset where we grouped together visually similar
clothing classes, to give a combined set of 19 classes. Details
about the new class grouping can be found in the supplemen-
tary material. For this experiment, BCNN gave an accuracy
of 74.5% while our pose ensemble performs at 79.6% (Front:
85.1%, Back: 81.1%, Side: 72.3%).

5. CONCLUSION

We posit that it’s harder for a single network, deep or shallow,
to overcome large intra-class variance and small inter-class
variance, as observed from an arbitrary view, in a data scarce
FGVC problem. The problem becomes even harder when the
class has limited representation in large benchmark datasets
like ImageNet, making it harder to pretrain for generic fea-
tures.

We observe that the classification problem gets signifi-
cantly simplified when viewing objects from a similar pose.
We exploit the observation and train an ensemble of pose ex-
perts with an expert for each view, leading to improvement in
accuracy as observed in our experiments. In agreement with
our hypothesis, we observe that the proposed approach im-
proves the state-of-the-art by a greater margin as the category
becomes more and more under-represented in ImageNet. The
under-representation forces the models to learn new features
from the relatively small number of fine-grained samples. The
exploitation of structure in the data, such as pose, therefore
becomes very important. We show that the proposed model
excels in such cases.
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A. BENCHMARK DATASETS birds cars  airerafts
\bbox bbox \bbox bbox \bbox bbox

Benchmark datasets used in the research were segregated

pose-wise to suit the needs of the proposed model. CUB200- Pose 1 755 76.8 893 938 832 85.1
2011 is a bird species recognition dataset which was segre- Pose 2 771 779 885 926 827 843
gated into 3 poses: front facing, left facing and right facing. Pose 3 782 791 843 875 - -
The FGVC-Aircrafts dataset has been divided into 2 poses: Pose Detector 934 953 969 976 98.1 985
left facing and right facing, while the Stanford Cars dataset Pose Ensemble 763 784 879 920 825 839
is divided into 3 poses: front facing, side facing and back Single Net 704 764 79.8 - 741 -

facing. Representative images from these datasets are shown
in Fig. 3 and Fig. 4.

Table 4: Performance of individual Pose Experts and Pose Detector
on the benchmark datasets. “\bbox’ denotes experiments without
bounding box annotation. For birds, pose 1, 2 and 3 are front, left,
right, for cars these are front, side, back and for aircrafts these are
left and right respectively.

RIGHT

precision-recall curves across the 4 datasets. Common mis-
takes made by our network are illustrated in Fig. 7, which is
a visual comparison between top two pairs of most confused
classes from each of the benchmark datasets used. Their re-
spective confusion matrices are shown in Fig. 5.

LEFT

Fig. 3: Representative images from FGVC-Aircrafts dataset [25]
which was divided into two poses: left facing, right facing.

Confusion Matrix for FGVC-Aircrafts

Confusion Matrix for Stanford Cars

Fig. 4: (Left) Representative images from the Stanford Cars dataset
[26] which was divided into three poses: front, side, back. (Right)
Images from the CUB200-2011 birds dataset [3], divided into three
poses: front, left facing, right facing.

Confusion Matrix for CUB200-2011 Confusion Matrix for Footwear Dataset

B. FOOTWEAR DATASET

A contribution of this paper is the pose aware Footwear
dataset of 1000 images, spanning 12 footwear classes. Rep-
resentative image of our dataset is shown in Fig. 6.

C. COMPARISON WITH STATE-OF-THE-ART 0.0 02 0.4 0.6 0.8 1.0
Fig. 5: Normalised confusion matrices for FGVC-Aircrafts, Stan-
For all the benchmark datasets, individual pose expert accu- ford Cars, CUB200-2011 and our Footwear datasets. Please zoom

racies and pose detector performance, their ensemble com- 1N the pdf toread the fine text in the matrices.

parison with the corresponding single network using VGG16,
have been mentioned in Table 4. Fig. 8 shows the average
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Fig. 7: Top two pairs of classes that are most confused with each
other from each of the 4 datasets, one dataset per row. Each row
contains sample images from the test set which are most commonly
confused with the class of the neighbouring column.
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Fig. 8: Comparison of the precision-recall curves for the 4 datasets.

C.1. Application on Clothing Classification using Deep-
Fashion

For a grouped category set of 19 classes from the DeepFash-
ion Attribute Prediction dataset [27], category combinations
are given in Table 5.

grouped categories

1 Parka, Anorak, Jacket, Bomber

2 Hoodie

3 Peacoat, Blazer, Coat

4 Sweater, Cardigan, Turtleneck

5 Button Down, Flannel

6 Henley, Tee, Top, Jersey, Blouse, Halter, Tank
7 Chinos

8 Culottes

9 Skirt

10 Cutoffs, Shorts, Sweatshorts, Trunks
11 Jeans, Jeggings, Capris

12 Joggers, Jodhpurs, Leggings

13 Sarongs

14 Gauchos

15 Caftan, Kaftan, Kimono, Cape, Coverup, Poncho
16 Jump-suit

17 Dress, Romper, Sundress, Shirtdress

18 Nightdress, Robe

19 Onesie

Table 5: Grouped category set for the experiment on 19 classes of
the DeepFashion Attribute Prediction dataset.

C.2. Visualization

We use activation maps to highlight the quality of features be-
ing learnt by our networks, and help in visualizing how well
the pose experts are able to localize the discriminative image
regions which could vary in different poses of the same ob-
ject. Fig. 9 shows the sample class activation maps for the
4 datasets - footwear, birds, aircrafts, cars respectively - and
how the discriminative regions change with the viewpoints. In
the first two images of the second row, two different poses of
birds of the class ‘Blue Jay’ from CUB200-2011 dataset fo-
cus on different features; beak, feet and tail in the first image
whereas wings in the second image. Similarly, in the next two
images containing ‘Chevrolet Traverse SUV 2012° from the
Stanford Cars dataset, the pose experts seem to focus on the
front and hind wheels, backlight and roof in the first image



low activation high activation

Fig. 9: Class Activation Maps. First row shows the activation maps
from each of the 4 datasets. Second row shows 2 pairs of images,
each pair belonging to a particular class, with different viewpoints
and the variation in their discriminative regions. This discriminative
information in different poses is directly used by our Pose Experts.

whereas the headlight and logo in the second image. These
images have been generated using the technique suggested by
Zhou et al. [28].



